3 years ago

Full-scale identification of the wave forces exerted on a floating bridge using inverse methods and directional wave spectrum estimation

Ø.w. Petersen, O. Øiseth, E. Lourens

Publication date: 1 April 2019

Source: Mechanical Systems and Signal Processing, Volume 120

Author(s): Ø.W. Petersen, O. Øiseth, E. Lourens

Abstract

The dynamic behaviour of long-span bridges is governed by stochastic loads from typically ambient excitation sources. In real life, these loads cannot be measured directly at full scale. However, inverse methods can be utilised to identify these unknown forces using response measurements together with a numerical model of the relevant structure. This paper presents a case study of full-scale identification of the wave forces on the Bgsøysund bridge, a long-span pontoon bridge that has been monitored since 2013. First, a numerical model of the structure is formed, resulting in a reduced-order state-space model that takes into account the frequency-dependent hydrodynamic mass and damping from the fluid, based on fitting of rational transfer functions. Using acceleration data of the structure measured during several events of moderate and strong seas, the wave forces are identified using stochastic-deterministic methods for combined state and input estimation. In addition, a separate frequency-domain assessment of the wave forces is performed, in which the spectral density of the first-order wave forces is constructed from an estimated directional wave field model driven by wave elevation data. When compared in the frequency domain, the force estimates from the two approaches are of comparable magnitude. However, uncertainties in the assumptions and models behind the force estimates from the two approaches still play a significant role.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.