3 years ago

Exploiting Capacity of Sewer System Using Unsupervised Learning Algorithms Combined with Dimensionality Reduction.

Duo Zhang, Geir Lindholm, Nicolas Martinez, Harsha Ratnaweera

Exploiting capacity of sewer system using decentralized control is a cost effective mean of minimizing the overflow. Given the size of the real sewer system, exploiting all the installed control structures in the sewer pipes can be challenging. This paper presents a divide and conquer solution to implement decentralized control measures based on unsupervised learning algorithms. A sewer system is first divided into a number of subcatchments. A series of natural and built factors that have the impact on sewer system performance is then collected. Clustering algorithms are then applied to grouping subcatchments with similar hydraulic hydrologic characteristics. Following which, principal component analysis is performed to interpret the main features of sub-catchment groups and identify priority control locations. Overflows under different control scenarios are compared based on the hydraulic model. Simulation results indicate that priority control applied to the most suitable cluster could bring the most profitable result.

Publisher URL: http://arxiv.org/abs/1811.03883

DOI: arXiv:1811.03883v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.