3 years ago

Analysis of Fleet Modularity in an Artificial Intelligence-Based Attacker-Defender Game.

Xingyu Li, Bogdan I. Epureanu

Because combat environments change over time and technology upgrades are widespread for ground vehicles, a large number of vehicles and equipment become quickly obsolete. A possible solution for the U.S. Army is to develop fleets of modular military vehicles, which are built by interchangeable substantial components also known as modules. One of the typical characteristics of module is their ease of assembly and disassembly through simple means such as plug-in/pull-out actions, which allows for real-time fleet reconfiguration to meet dynamic demands. Moreover, military demands are time-varying and highly stochastic because commanders keep reacting to enemy's actions. To capture these characteristics, we formulated an intelligent agent-based model to imitate decision making process during fleet operation, which combines real-time optimization with artificial intelligence. The agents are capable of inferring enemy's future move based on historical data and optimize dispatch/operation decisions accordingly. We implement our model to simulate an attacker-defender game between two adversarial and intelligent players, representing the commanders from modularized fleet and conventional fleet respectively. Given the same level of combat resources and intelligence, we highlight the tactical advantages of fleet modularity in terms of win rate, unpredictability and suffered damage.

Publisher URL: http://arxiv.org/abs/1811.03742

DOI: arXiv:1811.03742v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.