3 years ago

Sample-Efficient Policy Learning based on Completely Behavior Cloning.

Qiming Zou, Ling Wang, Ke Lu, Yu Li

Direct policy search is one of the most important algorithm of reinforcement learning. However, learning from scratch needs a large amount of experience data and can be easily prone to poor local optima. In addition to that, a partially trained policy tends to perform dangerous action to agent and environment. In order to overcome these challenges, this paper proposed a policy initialization algorithm called Policy Learning based on Completely Behavior Cloning (PLCBC). PLCBC first transforms the Model Predictive Control (MPC) controller into a piecewise affine (PWA) function using multi-parametric programming, and uses a neural network to express this function. By this way, PLCBC can completely clone the MPC controller without any performance loss, and is totally training-free. The experiments show that this initialization strategy can help agent learn at the high reward state region, and converge faster and better.

Publisher URL: http://arxiv.org/abs/1811.03853

DOI: arXiv:1811.03853v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.