3 years ago

Information Theoretic Bounds Based Channel Quantization Design for Emerging Memories.

Zhen Mei, Kui Cai, Long Shi

Channel output quantization plays a vital role in high-speed emerging memories such as the spin-torque transfer magnetic random access memory (STT-MRAM), where high-precision analog-to-digital converters (ADCs) are not applicable. In this paper, we investigate the design of the 1-bit quantizer which is highly suitable for practical applications. We first propose a quantized channel model for STT-MRAM. We then analyze various information theoretic bounds for the quantized channel, including the channel capacity, cutoff rate, and the Polyanskiy-Poor-Verd\'{u} (PPV) finite-length performance bound. By using these channel measurements as criteria, we design and optimize the 1-bit quantizer numerically for the STT-MRAM channel. Simulation results show that the proposed quantizers significantly outperform the conventional minimum mean-squared error (MMSE) based Lloyd-Max quantizer, and can approach the performance of the 1-bit quantizer optimized by error rate simulations.

Publisher URL: http://arxiv.org/abs/1811.03832

DOI: arXiv:1811.03832v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.