3 years ago

Binary recovery via phase field regularization for first traveltime tomography.

Oliver R. A. Dunbar, Charles M. Elliott

We propose a double obstacle phase field methodology for binary recovery of the slowness function of an Eikonal equation found in first traveltime tomography. We treat the inverse problem as an optimization problem with quadratic misfit functional added to a phase field relaxation of the perimeter penalization functional. Our approach yields solutions as we account for well posedness of the forward problem by choosing regular priors. We obtain a convergent finite difference and mixed finite element based discretization and a well defined descent scheme by accounting for the non-differentiability of the forward problem. We validate the phase field technique with a $\Gamma$ - convergence result and numerically by conducting parameter studies for the scheme, and by applying it to a variety of test problems with different geometries, boundary conditions, and source - receiver locations.

Publisher URL: http://arxiv.org/abs/1811.02865

DOI: arXiv:1811.02865v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.