3 years ago

Nonlinear fatigue damage accumulation and life prediction of metals: A comparative study

Shun-Peng Zhu, Yong-Zhen Hao, José A.F. de Oliveira Correia, Grzegorz Lesiuk, Abílio M.P. de Jesus


Fatigue damage modelling and life prediction of engineering components under variable amplitude loadings are critical for ensuring their operational reliability and structural integrity. In this paper, five typical nonlinear fatigue damage accumulation models are evaluated and compared by considering the influence of load sequence and interaction on fatigue life of P355NL1 steels. Moreover, a new nonlinear fatigue damage accumulation model is proposed to account for these two effects. Experimental datasets of pressure vessel steel P355NL1 and four other materials under two‐block loadings are used for model comparative study. Results indicate that the proposed model yields more accurate fatigue life predictions for the five materials than the other models.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.