3 years ago

Protective effect of a natural ally on simultaneous mild heat and salt episodes in maize seedlings

Necla Pehlivan, Neslihan S. Guler


Abiotic stresses occur together in several combinations in nature and do not usually act alone. However, studies on plants mainly are limited to a single stress type. Yet, atmospheric trends make it indispensable to expand approaches to investigate physiological consequences under multiple abiotic stresses. The potential of Melatonin (Mel) hydropriming on photosynthetic machinery and antioxidant system was investigated in this study. Mel hydropriming (0.1 mmol/mL) resulted in leaf photochemistry protection, which is characterized by maximum photochemical efficiency of PSII, photosynthetic pigments intactness, reactive oxygen species (ROS) scavenging enzymes activation accompanying depressed levels of endogenous hydrogen peroxide (H2O2) and membrane oxidation in maize seedlings at early vegetative stage under combination of 150 mM NaCl and 37 ± 3 °C mild heat. Mimicking nature by combining stresses is more realistic to study abiotic stress responses. High antioxidant capacity of melatonin can serve as a hydropriming substance to withstand simultaneous heat and salt stress.

Publisher URL: https://link.springer.com/article/10.1007/s11738-018-2781-x

DOI: 10.1007/s11738-018-2781-x

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.