3 years ago

Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon

Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon
Stefan Abel, Felix Eltes, J. Elliott Ortmann, Andreas Messner, Pau Castera, Tino Wagner, Darius Urbonas, Alvaro Rosa, Ana M. Gutierrez, Domenico Tulli, Ping Ma, Benedikt Baeuerle, Arne Josten, Wolfgang Heni, Daniele Caimi, Lukas Czornomaz, Alexander A. Demkov, Juerg Leuthold, Pablo Sanchis, Jean Fompeyrine
The electro-optical Pockels effect is an essential nonlinear effect used in many applications. The ultrafast modulation of the refractive index is, for example, crucial to optical modulators in photonic circuits. Silicon has emerged as a platform for integrating such compact circuits, but a strong Pockels effect is not available on silicon platforms. Here, we demonstrate a large electro-optical response in silicon photonic devices using barium titanate. We verify the Pockels effect to be the physical origin of the response, with r42 = 923 pm V−1, by confirming key signatures of the Pockels effect in ferroelectrics: the electro-optic response exhibits a crystalline anisotropy, remains strong at high frequencies, and shows hysteresis on changing the electric field. We prove that the Pockels effect remains strong even in nanoscale devices, and show as a practical example data modulation up to 50 Gbit s−1. We foresee that our work will enable novel device concepts with an application area largely extending beyond communication technologies.

Publisher URL: https://www.nature.com/articles/s41563-018-0208-0

DOI: 10.1038/s41563-018-0208-0

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.