3 years ago

Global sensitivity analysis based on DIRECT-KG-HDMR and thermal optimization of pin-fin heat sink for the platform inertial navigation system.

Xin Luo, Fengtao Xu, Ting Wang, Hu Wang, Yang Zeng

In this study, in order to reduce the local high temperature of the platform in inertial navigation system (PINS), a pin-fin heat sink with staggered arrangement is designed. To reduce the dimension of the inputs and improve the efficiency of optimization, a feasible global sensitivity analysis (GSA) based on Kriging-High Dimensional Model Representation with DIviding RECTangles sampling strategy (DIRECT-KG-HDMR) is proposed. Compared with other GSA methods, the proposed method can indicate the effects of the structural and the material parameters on the maximum temperature at the bottom of the heat sink by using both sensitivity and coupling coefficients. From the results of GSA, it can be found that the structural parameters have greater effects on thermal performance than the material ones. Moreover, the coupling intensities between the structural and material parameters are weak. Therefore, the structural parameters are selected to optimize the thermal performance of the heat sink, and several popular optimization algorithms such as GA, DE, TLBO, PSO and EGO are used for the optimization. Moreover, steady thermal response of the PINS with the optimized heat sink is also studied, and its result shows that the maximum temperature of high temperature region of the platform is reduced by 1.09 degree Celsius compared with the PINS without the heat sink.

Publisher URL: http://arxiv.org/abs/1811.03800

DOI: arXiv:1811.03800v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.