3 years ago

Future prospects for ground-based gravitational wave detectors $-$ The Galactic double neutron star merger rate revisited.

Nihan Pol, Maura Mclaughlin, Duncan R. Lorimer

We present the Galactic merger rate for double neutron star (DNS) binaries using the observed sample of eight DNS systems merging within a Hubble time. This sample includes the recently discovered, highly relativistic DNS systems J1757$-$1854 and J1946+2052, and is approximately three times the sample size used in previous estimates of the Galactic merger rate by Kim et al. Using this sample, we calculate the vertical scale height for DNS systems in the Galaxy to be $z_0 = 0.4 \pm 0.1$ kpc. We calculate a Galactic DNS merger rate of $\mathcal{R}_{\rm MW} = 42^{+30}_{-14}$ Myr$^{-1}$ at the 90% confidence level. The corresponding DNS merger detection rate for Advanced LIGO is $\mathcal{R}_{\rm LIGO} = 0.18^{+0.13}_{-0.06} \times \left( D_{\rm r}/100 \ \rm Mpc \right)^3 \rm yr^{-1}$, where $D_{\rm r}$ is the range distance. Using this merger detection rate and the predicted range distance of 120$-$170 Mpc for the third observing run of LIGO (Laser Interferometer Gravitational-wave Observatory, Abbott et al.), we predict, accounting for 90% confidence intervals, that LIGO$-$Virgo will detect anywhere between zero and two DNS mergers. We explore the effects of the underlying pulsar population properties on the merger rate and compare our merger detection rate with those estimated using different formation and evolutionary scenario of DNS systems. As we demonstrate, reconciling the rates is sensitive to assumptions about the DNS population, including its radio pulsar luminosity function. Future constraints from further gravitational wave DNS detections and pulsar surveys anticipated in the near future should permit tighter constraints on these assumptions.

Publisher URL: http://arxiv.org/abs/1811.04086

DOI: arXiv:1811.04086v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.