3 years ago

Inflation driven by Einstein-Gauss-Bonnet gravity.

Sumanta Chakraborty, Tanmoy Paul, Soumitra Sengupta

We have explicitly demonstrated that scalar coupled Gauss-Bonnet gravity in four dimension can have non-trivial effects on the early inflationary stage of our universe. In particular, we have shown that the scalar coupled Gauss-Bonnet term alone is capable of driving the inflationary stages of the universe without incorporating slow roll approximation, while remaining compatible with the current observations. Subsequently, to avoid the instability of the tensor perturbation modes we have introduced a self-interacting potential for the inflaton field and have shown that in this context as well it is possible to have inflationary scenario. Moreover it turns out that presence of the Gauss-Bonnet term is incompatible with the slow roll approximation and hence one must work with the field equations in the most general context. Finally, we have shown that the scalar coupled Gauss-Bonnet term attains smaller and smaller values as the universe exits from inflation. Thus at the end of the inflation the universe makes a smooth transition to Einstein gravity.

Publisher URL: http://arxiv.org/abs/1804.03004

DOI: arXiv:1804.03004v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.