3 years ago

Parallelization and implementation of multi-spin Monte Carlo simulation of 2D square Ising model using MPI and C++.

Dariush Hassani, Shahnoosh Rafibakhsh

In this paper, we present a parallel algorithm for Monte Carlo simulation of the 2D Ising Model to perform efficiently on a cluster computer using MPI. We use C++ programming language to implement the algorithm. In our algorithm, every process creates a sub-lattice and the energy is calculated after each Monte Carlo iteration. Each process communicates with its two neighbor processes during the job and they exchange the boundary spin variables. Finally, the total energy of lattice is calculated by map-reduce method versus the temperature. We use multi-spin coding technique to reduce the interprocess communications. This algorithm has been designed in a way that an appropriate load-balancing exists and it benefits a good scalability. It has been executed on the cluster computer of Plasma Physics Research Center which includes 9 nodes and each node consists of two quad-core CPUs. Our results show that this algorithm is more efficient for large lattices and more iterations.

Publisher URL: http://arxiv.org/abs/1811.04384

DOI: arXiv:1811.04384v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.