3 years ago

Detecting Gravitational Wave Bursts with LISA in the presence of Instrumental Glitches.

Travis Robson, Neil J. Cornish

The Laser Interferometer Space Antenna (LISA) will open a rich discovery space in the milli-Hertz gravitational wave band. In addition to the anticipated signals from many millions of binary systems, this band may contain new and previously un-imagined sources for which we currently have no models. To detect unmodeled and unexpected signals we need to be able to separate them from instrumental noise artifacts, or glitches. Glitches are a regular feature in the data from ground based laser interferometers, and they were also seen in data from the LISA Pathfinder mission. In contrast to the situation on ground, we will not have the luxury of having multiple independent detectors to help separate unmodeled signals from glitches, and new techniques have to be developed. Here we show that unmodeled gravitational wave bursts can be detected with LISA by leveraging the different way in which instrument glitches and gravitational wave bursts imprint themselves in the time-delay interferometery data channels. We show that for signals with periods longer than the light travel time between the spacecraft, the "breathing mode" or Sagnac data combination is key to detection. Conversely, for short period signals it is the time of arrival at each spacecraft that aids separation. We investigate the conditions under which we can distinguish the origin of signals and glitches consisting of a single sine-Gaussian wavelet and determine how well we can characterize the signal. We find that gravitational waves bursts can be unambiguously detected and characterized with just a single data channel (four functioning laser links), though the signal separation and parameter estimation improve significantly when all six laser links are operational.

Publisher URL: http://arxiv.org/abs/1811.04490

DOI: arXiv:1811.04490v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.