3 years ago

Ubiquitous Instabilities of Dust Moving in Magnetized Gas.

Philip F. Hopkins, Jonathan Squire

Squire & Hopkins (2017) showed that coupled dust-gas mixtures are generically subject to 'resonant drag instabilities' (RDIs), which drive violently-growing fluctuations in both. But the role of magnetic fields and charged dust has not yet been studied. We therefore explore the RDI in gas which obeys ideal MHD and is coupled to dust via both Lorentz forces and drag, with an external acceleration (e.g., gravity, radiation) driving dust drift through gas. We show this is always unstable, at all wavelengths and non-zero values of dust-to-gas ratio, drift velocity, dust charge, 'stopping time' or drag coefficient (for any drag law), or field strength; moreover growth rates depend only weakly (sub-linearly) on these parameters. Dust charge and magnetic fields do not suppress instabilities, but give rise to a large number of new instability 'families,' each with distinct behavior. The 'MHD-wave' (magnetosonic or Alfven) RDIs exhibit maximal growth along 'resonant' angles where the modes have a phase velocity matching the corresponding MHD wave, and growth rates increase without limit with wavenumber. The 'gyro' RDIs are driven by resonances between drift and Larmor frequencies, giving growth rates sharply peaked at specific wavelengths. Other instabilities include 'acoustic' and 'pressure-free' modes (previously studied), and a family akin to cosmic ray instabilities which appear when Lorentz forces are strong and dust streams super-Alfvenically along field lines. We discuss astrophysical applications in the warm ISM, CGM/IGM, HII regions, SNe ejecta/remnants, Solar corona, cool-star winds, GMCs, and AGN.

Publisher URL: http://arxiv.org/abs/1801.10166

DOI: arXiv:1801.10166v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.