3 years ago

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network.

Risi Kondor, Zhen Lin, Shubhendu Trivedi

Recent work by Cohen \emph{et al.} has achieved state-of-the-art results for learning spherical images in a rotation invariant way by using ideas from group representation theory and noncommutative harmonic analysis. In this paper we propose a generalization of this work that generally exhibits improved performace, but from an implementation point of view is actually simpler. An unusual feature of the proposed architecture is that it uses the Clebsch--Gordan transform as its only source of nonlinearity, thus avoiding repeated forward and backward Fourier transforms. The underlying ideas of the paper generalize to constructing neural networks that are invariant to the action of other compact groups.

Publisher URL: http://arxiv.org/abs/1806.09231

DOI: arXiv:1806.09231v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.