3 years ago

On the Performance and Convergence of Distributed Stream Processing via Approximate Fault Tolerance.

Zhinan Cheng, Qun Huang, Patrick P. C. Lee

Fault tolerance is critical for distributed stream processing systems, yet achieving error-free fault tolerance often incurs substantial performance overhead. We present AF-Stream, a distributed stream processing system that addresses the trade-off between performance and accuracy in fault tolerance. AF-Stream builds on a notion called approximate fault tolerance, whose idea is to mitigate backup overhead by adaptively issuing backups, while ensuring that the errors upon failures are bounded with theoretical guarantees. Our AF-Stream design provides an extensible programming model for incorporating general streaming algorithms as well as exports only few threshold parameters for configuring approximation fault tolerance. Furthermore, we formally prove that AF-Stream preserves high algorithm-specific accuracy of streaming algorithms, and in particular the convergence guarantees of online learning. Experiments show that AF-Stream maintains high performance (compared to no fault tolerance) and high accuracy after multiple failures (compared to no failures) under various streaming algorithms.

Publisher URL: http://arxiv.org/abs/1811.04570

DOI: arXiv:1811.04570v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.