3 years ago

Modeling Conceptual Characteristics of Virtual Machines for CPU Utilization Prediction.

Shengwei Chen, Yanyan Shen, Yanmin Zhu

Cloud services have grown rapidly in recent years, which provide high flexibility for cloud users to fulfill their computing requirements on demand. To wisely allocate computing resources in the cloud, it is inevitably important for cloud service providers to be aware of the potential utilization of various resources in the future. This paper focuses on predicting CPU utilization of virtual machines (VMs) in the cloud. We conduct empirical analysis on Microsoft Azure's VM workloads and identify important conceptual characteristics of CPU utilization among VMs, including locality, periodicity and tendency. We propose a neural network method, named Time-aware Residual Networks (T-ResNet), to model the observed conceptual characteristics with expanded network depth for CPU utilization prediction. We conduct extensive experiments to evaluate the effectiveness of our proposed method and the results show that T-ResNet consistently outperforms baseline approaches in various metrics including RMSE, MAE and MAPE.

Publisher URL: http://arxiv.org/abs/1811.04731

DOI: arXiv:1811.04731v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.