3 years ago

Navigating Assistance System for Quadcopter with Deep Reinforcement Learning.

Tung-cheng Wu, Shau-yin Tseng, Chin-feng Lai, Chia-yu Ho, Ying-hsun Lai

In this paper, we present a deep reinforcement learning method for quadcopter bypassing the obstacle on the flying path. In the past study, the algorithm only controls the forward direction about quadcopter. In this letter, we use two functions to control quadcopter. One is quadcopter navigating function. It is based on calculating coordination point and find the straight path to the goal. The other function is collision avoidance function. It is implemented by deep Q-network model. Both two function will output rotating degree, the agent will combine both output and turn direct. Besides, deep Q-network can also make quadcopter fly up and down to bypass the obstacle and arrive at the goal. Our experimental result shows that the collision rate is 14% after 500 flights. Based on this work, we will train more complex sense and transfer model to the real quadcopter.

Publisher URL: http://arxiv.org/abs/1811.04584

DOI: arXiv:1811.04584v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.