3 years ago

What If We Simply Swap the Two Text Fragments? A Straightforward yet Effective Way to Test the Robustness of Methods to Confounding Signals in Nature Language Inference Tasks.

Haohan Wang, Da Sun, Eric P. Xing

Nature language inference (NLI) task is a predictive task of determining the inference relationship of a pair of natural language sentences. With the increasing popularity of NLI, many state-of-the-art predictive models have been proposed with impressive performances. However, several works have noticed the statistical irregularities in the collected NLI data set that may result in an over-estimated performance of these models and proposed remedies. In this paper, we further investigate the statistical irregularities, what we refer as confounding factors, of the NLI data sets. With the belief that some NLI labels should preserve under swapping operations, we propose a simple yet effective way (swapping the two text fragments) of evaluating the NLI predictive models that naturally mitigate the observed problems. Further, we continue to train the predictive models with our swapping manner and propose to use the deviation of the model's evaluation performances under different percentages of training text fragments to be swapped to describe the robustness of a predictive model. Our evaluation metrics leads to some interesting understandings of recent published NLI methods. Finally, we also apply the swapping operation on NLI models to see the effectiveness of this straightforward method in mitigating the confounding factor problems in training generic sentence embeddings for other NLP transfer tasks.

Publisher URL: http://arxiv.org/abs/1809.02719

DOI: arXiv:1809.02719v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.