3 years ago

Automatic Modulation Classification: A Deep Learning Enabled Approach

Fan Meng, Peng Chen, Lenan Wu, Xianbin Wang,
Automatic modulation classification (AMC), which plays critical roles in both civilian and military applications, is investigated in this paper through a deep learning approach. Conventional AMCs can be categorized into maximum likelihood (ML) based (ML-AMC) and feature-based AMC. However, the practical deployment of ML-AMCs is difficult due to its high computational complexity, and the manually extracted features require expert knowledge. Therefore, an end-to-end convolution neural network (CNN) based AMC (CNN-AMC) is proposed, which automatically extracts features from the long symbol-rate observation sequence along with the estimated signal-to-noise ratio (SNR). With CNN-AMC, a unit classifier is adopted to accommodate the varying input dimensions. The direct training of CNN-AMC is challenging with the complicated model and complex tasks, so a novel two-step training is proposed, and the transfer learning is also introduced to improve the efficiency of retraining. Different digital modulation schemes have been considered in distinct scenarios, and the simulation results show that the CNN-AMC can outperform the feature-based method, and obtain a closer approximation to the optimal ML-AMC. Besides, CNN-AMCs have the certain robustness to estimation error on carrier phase offset and SNR. With parallel computation, the deep-learning-based approach is about $ 40$ to $ 1700$ times faster than the ML-AMC regarding inference speed.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.