3 years ago

Energy-efficient sensorless load angle control of a BLDC motor using sinusoidal currents

Jasper De Viaene, Florian Verbelen, Stijn Derammelaere, Kurt Stockman,
Nowadays, most brushless DC (BLDC) motors use Hall sensors or sensorless algorithms based on back-electromotive force (back-EMF) sensing to detect rotor position information. These methods detect the commutation moments but imply the use of rectangular stator currents which, according to recent literature, limits the energy efficiency. In this study, sinusoidal stator currents are used to increase the motor energy efficiency. As a consequence, standard control based on the feedback of the Hall sensors or based on sensorless techniques detecting the back-EMF zero-crossing cannot be used. Therefore, the authors propose a load angle control algorithm for BLDC motors without using position and speed sensors. The objective is to obtain energy-efficient sensorless control for the BLDC motor based on the measurement of only two current and one voltage signal. The energy saving potential of the proposed method is especially outspoken for fixed speed applications with varying loads, which are typical BLDC applications. Experimental results are presented to validate the proposed method. Energy efficiency measurements over the whole operating range of the BLDC motor are included and show an energy saving potential up to 9.5%.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.