3 years ago

Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications

Tiago Carneiro, Raul Victor Medeiros Da Nó, Brega, Thiago Nepomuceno, Gui-bin Bian, Victor Hugo C. De Albuquerque, Pedro Pedrosa Rebouç, As Filho,
Google Colaboratory (also known as Colab) is a cloud service based on Jupyter Notebooks for disseminating machine learning education and research. It provides a runtime fully configured for deep learning and free-of-charge access to a robust GPU. This paper presents a detailed analysis of Colaboratory regarding hardware resources, performance, and limitations. This analysis is performed through the use of Colaboratory for accelerating deep learning for computer vision and other GPU-centric applications. The chosen test-cases are a parallel tree-based combinatorial search and two computer vision applications: object detection/classification and object localization/segmentation. The hardware under the accelerated runtime is compared with a mainstream workstation and a robust Linux server equipped with 20 physical cores. Results show that the performance reached using this cloud service is equivalent to the performance of the dedicated testbeds, given similar resources. Thus, this service can be effectively exploited to accelerate not only deep learning but also other classes of GPU-centric applications. For instance, it is faster to train a CNN on Colaboratory’s accelerated runtime than using 20 physical cores of a Linux server. The performance of the GPU made available by Colaboratory may be enough for several profiles of researchers and students. However, these free-of-charge hardware resources are far from enough to solve demanding real-world problems and are not scalable. The most significant limitation found is the lack of CPU cores. Finally, several strengths and limitations of this cloud service are discussed, which might be useful for helping potential users.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.