3 years ago

Towards time-varying proximal dynamics in Multi-Agent Network Games.

Carlo Cenedese, Yu Kawano, Sergio Grammatico, Ming Cao

Distributed decision making in multi-agent networks has recently attracted significant research attention thanks to its wide applicability, e.g. in the management and optimization of computer networks, power systems, robotic teams, sensor networks and consumer markets. Distributed decision-making problems can be modeled as inter-dependent optimization problems, i.e., multi-agent game-equilibrium seeking problems, where noncooperative agents seek an equilibrium by communicating over a network. To achieve a network equilibrium, the agents may decide to update their decision variables via proximal dynamics, driven by the decision variables of the neighboring agents. In this paper, we provide an operator-theoretic characterization of convergence with a time-invariant communication network. For the time-varying case, we consider adjacency matrices that may switch subject to a dwell time. We illustrate our investigations using a distributed robotic exploration example.

Publisher URL: http://arxiv.org/abs/1811.04391

DOI: arXiv:1811.04391v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.