3 years ago

Modeling size-dependent thermoelastic energy dissipation of graphene nanoresonators using nonlocal elasticity theory

S. Rashahmadi, S. A. Meguid

Abstract

Recent developments in nanostructured materials have led to the use of graphene sheets as resonators in advanced micro- and nanoelectromechanical systems. An important feature of micro- and nanoresonators is their ability to function with low power dissipation. The main intrinsic mechanism of energy loss in these advanced devices is thermoelastic damping (TED). In this article, we study TED effects in orthotropic graphene sheets of varied lengths operating at different temperatures using nonlocal elasticity theory. For this purpose, the fundamental thermoelastic relations are used to develop a system of coupled partial differential equations to describe the behavior of graphene nanoresonators. The orthotropic mechanical and thermal properties of graphene were taken into account in our model for zigzag and armchair chiralities operating at different temperatures. The free in-plane vibration of the graphene nanoresonator is analyzed using Galerkin method. Decidedly, we show that the developed system of equations is capable of describing the TED behavior of graphene nanoresonators along the two considered chiralities during thermoelastic vibration. Specifically, we examined the influence of size, chirality, and temperature upon thermoelastic damping, as measured by the so-called quality factor, of the graphene nanoresonator. Our results reveal that the nanoresonator experiences higher energy dissipation with increased temperature. They also reveal the dependence of the energy dissipation upon the size and chirality of the graphene sheet.

Publisher URL: https://link.springer.com/article/10.1007/s00707-018-2281-5

DOI: 10.1007/s00707-018-2281-5

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.