3 years ago

Nonlinear Hybrid Controller Design for Perturbed Quadrotor Robot by Uncertainties

Ju-Qian Zhang, Yu-Ru Shi, Yong Wu, Bang-Chun Wen

Abstract

In this paper, a novel nonlinear hybrid observers (HOB) based dynamic surface control (DSC) system, which integrates nominal and compensation controller, is designed for autonomous quadrotor robot perturbed by the uncertainties, e.g., external disturbances and measurement-delay. In this hybrid control system, the nominal controller based on dynamic surface control superior to the backstepping technique is the main controller, and the disturbance observer (DOB) is incorporated as the compensation controller to eliminate the effect of uncertainties caused by model mismatch and external disturbances. In addition, in order to relax the impact of measurement-delay induced by sensors of poor quality and heavy computation burden, the measurement-delay observer (MOB) is derived. Next, stability of the closed-loop control system is analytically proved based on Lyapunov theorem. Finally, comparative controllers are evaluated on simulation and experimental environments to demonstrate the effectiveness and merits of the proposed controller for quadrotor robot against the uncertainties.

Publisher URL: https://link.springer.com/article/10.1007/s12541-018-0191-z

DOI: 10.1007/s12541-018-0191-z

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.