3 years ago

L-extensions and L-boundary of conformal spacetimes

A. Bautista, A. Ibort, J. Lafuente


The notion of L-boundary, a new causal boundary proposed by R. Low based on constructing a ‘sky at infinity’ for any light ray, is discussed in detail. The analysis of the notion of L-boundary will be done in the 3-dimensional situation for the ease of presentation. The proposed notion of causal boundary is intrinsically conformal and, as it will be proved in the paper, under natural conditions provides a natural extension \({\overline{M}}\) of the given spacetime M with smooth boundary \(\partial M = {\overline{M}} {\backslash } M\) . The extensions \({\overline{M}}\) of any conformal manifold M constructed in this way are characterised exclusively in terms of local properties at the boundary points. Such extensions are called L-extensions and it is proved that, if they exist, they are essentially unique. Finally it is shown that in the 3-dimensional case, any L-extension is equivalent to the canonical extension obtained by using the L-boundary of the manifold.

Publisher URL: https://link.springer.com/article/10.1007/s10714-018-2479-9

DOI: 10.1007/s10714-018-2479-9

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.