3 years ago

The stationary distribution of a sample from the Wright–Fisher diffusion model with general small mutation rates

Conrad J. Burden, Robert C. Griffiths

Abstract

The stationary distribution of a sample taken from a Wright–Fisher diffusion with general small mutation rates is found using a coalescent approach. The approximation is equivalent to having at most one mutation in the coalescent tree to the first order in the rates. The sample probabilities characterize an approximation for the stationary distribution from the Wright–Fisher diffusion. The approach is different from Burden and Tang (Theor Popul Biol 112:22–32, 2016; Theor Popul Biol 113:23–33, 2017) who use a probability flux argument to obtain the same results from a forward diffusion generator equation. The solution has interest because the solution is not known when rates are not small. An analogous solution is found for the configuration of alleles in a general exchangeable binary coalescent tree. In particular an explicit solution is found for a pure birth process tree when individuals reproduce at rate \(\lambda \) .

Publisher URL: https://link.springer.com/article/10.1007/s00285-018-1306-y

DOI: 10.1007/s00285-018-1306-y

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.