3 years ago

Side scan sonar image segmentation and synthesis based on extreme learning machine

Yan Song, Bo He, Peng Liu, Tianhong Yan

Publication date: March 2019

Source: Applied Acoustics, Volume 146

Author(s): Yan Song, Bo He, Peng Liu, Tianhong Yan


This paper presents side scan sonar (SSS) image segmentation and synthesis methods based on extreme learning machine (ELM). As an algorithm derived from single-hidden layer feedforward neural networks (SLFNs), ELM has superior performance and fast learning speed with randomly generated hidden layer parameters. The SSS image segmentation uses ELM as a classifier with features generated by convolutional neural network (CNN) of multiple pathways. The CNN of multiple pathways can learn local and global features from SSS images adaptively. Taking these features as input, ELM assigns the central pixel of each input image patch of CNN to one class. Moreover, the presented SSS image synthesis method utilizes ELM as a regression algorithm, in which the non-parametric sampling algorithm is used first to synthesize coarse SSS images according to segmentation maps and sample images for each class. Then ELM trained with the coarse synthesis images and their ground truth maps (the Gaussian-filtered SSS images) synthesizes fine SSS images. Furthermore, peak signal to noise ratio (PSNR) of the synthetic SSS images with the Gaussian-filtered SSS images as ref is used as one evaluation metric for segmentation performance. Experimental results demonstrate that the SSS image segmentation method combining convolutional features with ELM outperforms typical CNN and support vector machine (SVM), and the presented SSS image synthesis method and the evaluation metric are applicable.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.