3 years ago

Sequentially adaptive Bayesian learning algorithms for inference and optimization

John Geweke, Garland Durham

Publication date: Available online 12 November 2018

Source: Journal of Econometrics

Author(s): John Geweke, Garland Durham


The sequentially adaptive Bayesian learning algorithm (SABL) builds on and ties together ideas from sequential Monte Carlo and simulated annealing. The algorithm can be used to simulate from Bayesian posterior distributions, using either data tempering or power tempering, or for optimization. A key feature of SABL is that the introduction of information is adaptive and controlled, ensuring that the algorithm performs reliably and efficiently in a wide variety of applications with off-the-shelf settings, minimizing the need for tedious tuning, tinkering, trial and error by users. The algorithm is pleasingly parallel, and a Matlab toolbox implementing the algorithm is able to make efficient use of massively parallel computing environments such as graphics processing units (GPUs) with minimal user effort. This paper describes the algorithm, provides theoretical foundations, applies the algorithm to Bayesian inference and optimization problems illustrating key properties of its operation, and briefly describes the open source software implementation.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.