3 years ago

Investigating the mechanisms of diurnal rainfall variability over Peninsular Malaysia using the non-hydrostatic regional climate model

Ahmad Fairudz Jamaluddin, Fredolin Tangang, Jing Xiang Chung, Liew Juneng, Hidetaka Sasaki, Izuru Takayabu

Abstract

This study aims to provide a basis for understanding the mechanisms of diurnal rainfall variability over Peninsular Malaysia by utilising the Non-Hydrostatic Regional Climate Model (NHRCM). The present day climate simulations at 5 km resolution over a period of 20 years, from 1st December 1989 to 31st January 2010 were conducted using the six-hourly Japanese re-analysis 55 years (JRA-55) data and monthly Centennial in situ Observation Based Estimates (COBE) of sea surface temperature as lateral and lower boundary conditions. Despite some biases, the NHRCM performed reasonably well in simulating diurnal rainfall cycles over Peninsular Malaysia. During inter-monsoon periods, the availability of atmospheric moisture played a major role in modulating afternoon rainfall maxima over the foothills of the Titiwangsa mountain range (FT sub-region). During the southwest monsoon, a lack of atmospheric moisture inhibits the occurrence of convective rainfall over the FT sub-region. The NHRCM was also able to simulate the suppression of the diurnal rainfall cycle over the east coast of Peninsular Malaysia (EC sub-region) and afternoon rainfall maximum over the Peninsular Malaysia inland-valley (IN sub-region) area during the northeast monsoon. Over the EC sub-region, daytime radiational warming of the top of clouds enhanced atmospheric stability, thus reducing afternoon rainfall. On the other hand, night-time radiational cooling from cloud tops decreases atmospheric stability and increases nocturnal rainfall. In the early morning, the rainfall maximum was confined to the EC sub-region due to the retardation of the north-easterly monsoonal wind by the land breeze and orographic blocking. However, in the afternoon, superimposition of the sea breeze on the north-easterly monsoonal wind strengthened the north-easterly wind, thus causing the zone of convection to expand further inland.

Publisher URL: https://link.springer.com/article/10.1007/s00703-017-0541-x

DOI: 10.1007/s00703-017-0541-x

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.