3 years ago

[ASAP] Influence of Branched Alkyl Ester-Labeled Side Chains on Specific Chain Arrangement and Charge-Transport Properties of Diketopyrrolopyrrole-Based Conjugated Polymers

[ASAP] Influence of Branched Alkyl Ester-Labeled Side Chains on Specific Chain Arrangement and Charge-Transport Properties of Diketopyrrolopyrrole-Based Conjugated Polymers
Hyung Jong Kim, Mingyuan Pei, Joong Se Ko, Min Hee Ma, Gi Eun Park, Jimin Baek, Hoichang Yang, Min Ju Cho, Dong Hoon Choi
A series of diketopyrrolopyrrole (DPP)-based copolymers, with DPP and bithiophene (BT) as the electron-acceptor and donor backbone units, respectively, are synthesized with branched alkyl side chains that are either directly coupled to the N-positions of DPP or separated by an alkyl ester group. The ester moieties in the side chains induce specific cohesive molecular interactions between these side chains, as compared to the alkyl-only side chains with weak van der Waals interactions. Structure analysis of the DPPBT-based copolymers demonstrated that the introduction of a proper alkyl ester spacer to the branched alkyl chains can shorten the π–π stacking distance between the DPPBT backbones down to 3.61 Å and promote the development of two-dimensionally extended domains. DPPBT-based copolymers, including different branched alkyl ester-labeled side chains, are spun-cast on polymer-treated SiO2 dielectrics from dilute chloroform solutions for organic thin-film transistors. A DPPBT-based copolymer with properly engineered side chains (i.e., 2-decyltetradecyl ester-labeled side chains) shows the highest hole mobility of 2.30 cm2 V–1 s–1 and an on/off current ratio of above 106.

Publisher URL: http://dx.doi.org/10.1021/acsami.8b13292

DOI: 10.1021/acsami.8b13292

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.