3 years ago

Coiled-coil domain-containing 80 accelerates atherosclerosis development through decreasing lipoprotein lipase expression via ERK1/2 phosphorylation and TET2 expression

Duo Gong, Qiang Zhang, Ling-yan Chen, Xiao-hua Yu, Gang Wang, Jin Zou, Xi-long Zheng, Da-wei Zhang, Wei-dong Yin, Chao-ke Tang

Publication date: Available online 12 November 2018

Source: European Journal of Pharmacology

Author(s): Duo Gong, Qiang Zhang, Ling-yan Chen, Xiao-Hua Yu, Gang Wang, Jin Zou, Xi-Long Zheng, Da-Wei Zhang, Wei-dong Yin, Chao-ke Tang

Abstract

Recent studies showed that coiled-coil domain-containing 80 (CCDC80) has a positive link with atherosclerosis and that plasma CCDC80 levels are positively correlated with the levels of fasting plasma triglycerides (TG) in obese individuals. The underlying mechanisms, however, are unclear. Using Hematoxylin-eosin (H&E) and Oil Red O staining, we found that CCDC80 overexpression in vivo significantly increased plasma lipid contents, decreased the expression and activity of lipoprotein lipase (LPL), and accelerated the development of atherosclerosis. Conversely, knockdown of CCDC80 decreased plaque lesions area. In vitro, qRT-PCR and western blot results showed that CCDC80 overexpression significantly decreased, while CCDC80 knockdown increased, LPL expression in cultured vascular smooth muscle cells (VSMCs). Further, we found that CCDC80 reduced LPL expression via inhibiting the phosphorylation of extracellular regulated protein kinase 1/2 (ERK1/2) and also increased the methylation of LPL promoter via down-regulating Tet methylcytosine dioxygenase 2 (TET2). Our results also revealed that CCDC80 significantly down-regulated TET2 expression through decreasing the phosphorylation of ERK1/2. In addition, we found that CCDC80 decreased binding of TET2 to forkhead box O3 (FOXO3a) but had no effect on FOXO3a expression. On the other hand, and that FOXO3a was partially involved in TET2-regulated LPL expression. CCDC80 down-regulated ERK1/2 phosphorylation and decreased expression of TET2 and its interaction with FOXO3a, leading to a reduction of LPL expression and acceleration of atherosclerosis.

Graphical abstract

Graphical abstract for this article

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.