3 years ago

An Online Attention-based Model for Speech Recognition.

Ruchao Fan, Pan Zhou, Wei Chen, Jia Jia, Gang Liu

Attention-based end-to-end (E2E) speech recognition models such as Listen, Attend, and Spell (LAS) can achieve better results than traditional automatic speech recognition (ASR) hybrid models on LVCSR tasks. LAS combines acoustic, pronunciation and language model components of a traditional ASR system into a single neural network. However, such architectures are hard to be used for streaming speech recognition for its bidirectional listener architecture and attention mechanism. In this work, we propose to use latency-controlled bidirectional long short-term memory (LC- BLSTM) listener to reduce the delay of forward computing of listener. On the attention side, we propose an adaptive monotonic chunk-wise attention (AMoChA) to make LAS online. We explore how each part performs when it is used alone and obtain comparable or better results than LAS baseline. By combining the above two methods, we successfully stream LAS baseline with only 3.5% relative degradation of character error rate (CER) on our Mandarin corpus. We believe that our methods can also have the same effect on other languages.

Publisher URL: http://arxiv.org/abs/1811.05247

DOI: arXiv:1811.05247v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.