3 years ago

A New Hybrid Technique for Modeling Dense Star Clusters.

Carl L. Rodriguez, Bharath Pattabiraman, Sourav Chatterjee, Alok Choudhary, Wei-keng Liao, Meagan Morscher, Frederic A. Rasio

The "gravitational million-body problem," to model the dynamical evolution of a self-gravitating, collisional N-body system with ~10^6 particles over many relaxation times, remains a major challenge in computational astrophysics. Unfortunately, current techniques to model such systems suffer from severe limitations. A direct N-body simulation with more than 10^5 particles can require months or even years to complete, while an orbit-sampling Monte Carlo approach cannot adequately model the dynamics in a dense cluster core, particularly in the presence of many black holes. We have developed a new technique combining the precision of a direct N-body integration with the speed of a Monte Carlo approach. Our Rapid And Precisely Integrated Dynamics code, the RAPID code, statistically models interactions between neighboring stars and stellar binaries while integrating directly the orbits of stars or black holes in the cluster core. This allows us to accurately simulate the dynamics of the black holes in a realistic globular cluster environment without the burdensome N^2 scaling of a full N-body integration. We compare RAPID models of idealized globular clusters to identical models from the direct N-body and Monte Carlo methods. Our tests show that RAPID can reproduce the half-mass radii, core radii, black hole ejection rates, and binary properties of the direct N-body models far more accurately than a standard Monte Carlo integration while remaining significantly faster than a full N-body integration. With this technique, it will be possible to create more realistic models of Milky Way globular clusters with sufficient rapidity to explore the full parameter space of dense stellar clusters.

Publisher URL: http://arxiv.org/abs/1511.00695

DOI: arXiv:1511.00695v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.