3 years ago

Thermodynamics of Charged, Rotating, and Accelerating Black Holes.

Andres Anabalon, Finnian Gray, Ruth Gregory, David Kubiznak, Robert B. Mann

We show how to obtain a consistent thermodynamic description of accelerating asymptotically AdS black holes, extending our previous results by including charge and rotation. We find that the key ingredient of consistent thermodynamics is to ensure that the system is not over-constrained by including the possibility of varying the `string' tensions that are responsible for the acceleration of the black hole, yielding a first law of full cohomogeneity. The first law assumes the standard form, with the entropy given by one quarter of the horizon area and other quantities identified by standard methods. In particular we compute the mass in two independent ways: through a Euclidean action calculation and by the method of conformal completion. The ambiguity in the choice of the normalization of the timelike Killing vector can be fixed by explicit coordinate transformation (in the case of rotation) to the standard AdS form or by holographic methods (in the case of charge). This resolves a long-standing problem of formulating the thermodynamics of accelerating black holes, opening the way to detailed studies of their phase behaviour.

Publisher URL: http://arxiv.org/abs/1811.04936

DOI: arXiv:1811.04936v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.