3 years ago

Chiral symmetry restoration by parity doubling and the structure of neutron stars.

Michał Marczenko, David Blaschke, Krzysztof Redlich, Chihiro Sasaki

We investigate the equation of state for a recently developed hybrid quark-meson-nucleon model under neutron star conditions of $\beta-$equilibrium and charge neutrality. The model has the characteristic feature that at increasing baryon density chiral symmetry is restored in a first order transition within the hadronic phase by lifting the mass splitting between chiral partner states, before quark deconfinement takes place. Most important for this study are the nucleon (neutron, proton) and $N(1535)$ states. We present three sets for the two free parameters which result in compact star mass-radius relations in accordance with modern constraints on the mass from PSR~J0437-4715 and on the compactness from GW170817. We also consider the threshold for the direct URCA process for which a new relationship is given and suggest as an additional constraint on the parameter choice of the model that this process shall become operative at best for stars with masses above the range for binary radio pulsars, $M>1.4~M_\odot$.

Publisher URL: http://arxiv.org/abs/1805.06886

DOI: arXiv:1805.06886v4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.