3 years ago

Mode-conversion of the extraordinary wave at the upper hybrid resonance in the presence of small-amplitude density fluctuations.

N. A. Lopez, A. K. Ram

In spherical tokamaks, the electron plasma frequency is greater than the electron cyclotron frequency. Electromagnetic waves in the electron cyclotron range of frequencies are unsuitable for directly heating such plasmas due to their reduced accessibility. However, mode-conversion of the extraordinary wave to the electron Bernstein wave (X-B mode-conversion) at the upper hybrid resonance makes it possible to efficiently couple externally-launched electromagnetic wave energy into an overdense plasma core. Traditional mode-conversion models describe an X-mode wave propagating in a potential containing two cutoffs that bracket a single wave resonance. Often, however, the mode-conversion region is in the edge, where turbulent fluctuations and blobs can generate abrupt cutoffs and scattering of the incident X-mode wave. We present a new framework for studying the X-B mode-conversion which makes the inclusion of these fluctuations analytically tractable. In the new approach, the high-field cutoff is modelled as an infinite barrier, which manifests as a boundary condition applied to a wave equation involving only one cutoff adjacent to the resonance on the low-field side. The new model reproduces the main features of the previous approach, yet is more suitable for analyzing experimental observations and extrapolating to higher dimensions. We then develop an analytical estimate for the effect of small-amplitude, quasi-monochromatic density fluctuations on the X-B mode-conversion efficiency using perturbation theory. We find that Bragg backscattering of the launched X-mode wave reduces the mode-conversion efficiency significantly when the fluctuation wavenumber is resonant with the wavenumber of the incident X-mode wave. These analytical results are corroborated by numerically integrating the mode-conversion equations.

Publisher URL: http://arxiv.org/abs/1808.05282

DOI: arXiv:1808.05282v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.