3 years ago

Bose-Einstein Condensates as Gravitational Wave Detectors.

Matthew P. G. Robbins, Niayesh Afshordi, Robert Mann

We investigate a Bose-Einstein condensate (BEC) as a gravitational wave detector, and study its sensitivity by optimizing the properties of the condensate and the measurement duration. We show that detecting kilohertz gravitational waves is limited by current experimental techniques in squeezing BEC phonons, while at higher frequencies, decoherence due to phonon-phonon interaction gives the main limitation. Future improvements in technology to squeeze BEC states can make them competitive detectors for gravitational waves of astrophysical and/or cosmological origin.

Publisher URL: http://arxiv.org/abs/1811.04468

DOI: arXiv:1811.04468v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.