3 years ago

Increasing the accuracy of proteomic typing by decellularisation of amyloid tissue biopsies

Increasing the accuracy of proteomic typing by decellularisation of amyloid tissue biopsies
Diagnosis and treatment of systemic amyloidosis depend on accurate identification of the specific amyloid fibril protein forming the tissue deposits. Confirmation of monoclonal immunoglobulin light chain amyloidosis (AL), requiring cytotoxic chemotherapy, and avoidance of such treatment in non-AL amyloidosis, are particularly important. Proteomic analysis characterises amyloid proteins directly. It complements immunohistochemical staining of amyloid to identify fibril proteins and gene sequencing to identify mutations in the fibril precursors. However, proteomics sometimes detects more than one potentially amyloidogenic protein, especially immunoglobulins and transthyretin which are abundant plasma proteins. Ambiguous results are most challenging in the elderly as both AL and transthyretin (ATTR) amyloidosis are usually present in this group. We have lately described a procedure for tissue decellularisation which retains the structure, integrity and composition of amyloid but removes proteins that are not integrated within the deposits. Here we show that use of this procedure before proteomic analysis eliminates ambiguity and improves diagnostic accuracy. Significance Unequivocal identification of the protein causing amyloidosis disease is crucial for correct diagnosis and treatment. As a proof of principle, we selected a number of cardiac and fat tissue biopsies from patients with various types of amyloidosis and show that a classical procedure of decellularisation enhances the specificity of the identification of the culprit protein reducing ambiguity and the risk of misdiagnosis.

Publisher URL: www.sciencedirect.com/science

DOI: S1874391917302270

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.