3 years ago

How Secure are Deep Learning Algorithms from Side-Channel based Reverse Engineering?.

Manaar Alam, Debdeep Mukhopadhyay

Deep Learning algorithms have recently become the de-facto paradigm for various prediction problems, which include many privacy-preserving applications like online medical image analysis. Presumably, the privacy of data in a deep learning system is a serious concern. There have been several efforts to analyze and exploit the information leakages from deep learning architectures to compromise data privacy. In this paper, however, we attempt to provide an evaluation strategy for such information leakages through deep neural network architectures by considering a case study on Convolutional Neural Network (CNN) based image classifier. The approach takes the aid of low-level hardware information, provided by Hardware Performance Counters (HPCs), during the execution of a CNN classifier and a simple hypothesis testing in order to produce an alarm if there exists any information leakage on the actual input.

Publisher URL: http://arxiv.org/abs/1811.05259

DOI: arXiv:1811.05259v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.