3 years ago

Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning.

Kursat Rasim Mestav, Jaime Luengo-rozas, Lang Tong

The problem of state estimation for unobservable distribution systems is considered. A Bayesian approach is proposed that combines Bayesian inference with deep neural networks to achieve the minimum mean squared error estimation of network states for real-time applications. The proposed technique consists of distribution learning for stochastic power injection, a Monte Carlo technique for the training of a deep neural network for state estimation, and a Bayesian bad data detection and cleansing algorithm. Structural characteristics of the deep neural networks are investigated. Simulations illustrate the accuracy of Bayesian state estimation for unobservable systems and demonstrate the benefit of employing a deep neural network. Numerical results show the robustness of Bayesian state estimation against modeling and estimation errors of power injection distributions and the presence of bad data. Comparing with pseudo-measurement techniques, direct Bayesian state estimation with deep neural networks outperforms existing benchmarks.

Publisher URL: http://arxiv.org/abs/1811.02756

DOI: arXiv:1811.02756v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.