3 years ago

Graph Energies of Egocentric Networks and Their Correlation with Vertex Centrality Measures.

Mikołaj Morzy, Tomasz Kajdanowicz

Graph energy is the energy of the matrix representation of the graph, where the energy of a matrix is the sum of singular values of the matrix. Depending on the definition of a matrix, one can contemplate graph energy, Randi\'c energy, Laplacian energy, distance energy, and many others. Although theoretical properties of various graph energies have been investigated in the past in the areas of mathematics, chemistry, physics, or graph theory, these explorations have been limited to relatively small graphs representing chemical compounds or theoretical graph classes with strictly defined properties. In this paper we investigate the usefulness of the concept of graph energy in the context of large, complex networks. We show that when graph energies are applied to local egocentric networks, the values of these energies correlate strongly with vertex centrality measures. In particular, for some generative network models graph energies tend to correlate strongly with the betweenness and the eigencentrality of vertices. As the exact computation of these centrality measures is expensive and requires global processing of a network, our research opens the possibility of devising efficient algorithms for the estimation of these centrality measures based only on local information.

Publisher URL: http://arxiv.org/abs/1809.00094

DOI: arXiv:1809.00094v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.