3 years ago

Influence of carbon nanotubes on steel–concrete bond strength

A. Hawreen, J. A. Bogas

Abstract

In this study, the bond strength between steel and concrete reinforced with multi-walled carbon nanotubes (CNTs) is analysed. To this end, pull-out tests were carried out for concretes with incorporation of 0.05–0.1% of different types of functionalized and unfunctionalized CNTs with distinct aspect ratios and dispersion techniques. The results showed that CNTs can improve both compressive strength and steel–concrete bond up to 21% and 14% respectively, as compared to plain concrete. The highest compressive strength was found in concrete with higher amounts of lower aspect ratio CNTs, while the best steel–concrete bond performance was attained for concrete with lower amounts of higher aspect ratio CNTs. CNTs were effective to retain the crack propagation, increasing the bonding stiffness and reducing the deformation of concrete consoles between steel ribs. CNTs of higher aspect ratio could better contribute with their microcrack bridging effect. Microscopic analysis confirmed the adequate dispersion and microcrack bridging provided by CNTs, delaying the macrocrack propagation within the aggregate–paste and steel–concrete interfacial transition zones.

Publisher URL: https://link.springer.com/article/10.1617/s11527-018-1279-8

DOI: 10.1617/s11527-018-1279-8

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.