3 years ago

Embedding Electronic Health Records for Clinical Information Retrieval.

Xing Wei, Carsten Eickhoff

Neural network representation learning frameworks have recently shown to be highly effective at a wide range of tasks ranging from radiography interpretation via data-driven diagnostics to clinical decision support. This often superior performance comes at the price of dramatically increased training data requirements that cannot be satisfied in every given institution or scenario. As a means of countering such data sparsity effects, distant supervision alleviates the need for scarce in-domain data by relying on a related, resource-rich, task for training.

This study presents an end-to-end neural clinical decision support system that recommends relevant literature for individual patients (few available resources) via distant supervision on the well-known MIMIC-III collection (abundant resource). Our experiments show significant improvements in retrieval effectiveness over traditional statistical as well as purely locally supervised retrieval models.

Publisher URL: http://arxiv.org/abs/1811.05402

DOI: arXiv:1811.05402v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.