3 years ago

Intrinsic Differentiability and Intrinsic Regular Surfaces in Carnot Groups.

Daniela Di Donato

A Carnot group G is a connected, simply connected, nilpotent Lie group with stratified Lie algebra. Intrinsic regular surfaces in Carnot groups play the same role as C^1 surfaces in Euclidean spaces. As in Euclidean spaces, intrinsic regular surfaces can be locally defined in different ways: e.g. as non critical level sets or as continuously intrinsic differentiable graphs. The equivalence of these natural definitions is the problem that we are studying. Precisely our aim is to generalize some results proved by Ambrosio, Serra Cassano, Vittone valid in Heisenberg groups to the more general setting of Carnot groups.

Publisher URL: http://arxiv.org/abs/1811.05457

DOI: arXiv:1811.05457v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.