4 years ago

Analysis of protein complexes in Arabidopsis leaves using size exclusion chromatography and label-free protein correlation profiling

Analysis of protein complexes in Arabidopsis leaves using size exclusion chromatography and label-free protein correlation profiling
Protein complexes are fundamentally important for diverse cellular functions, and create functionalities that could never be achieved by a single polypeptide. Knowledge of the protein complex assemblies that exist in plant cells are limited. To close this gap, we applied an integrative proteomic approach that combines cell fractionation, protein chromatography and quantitative mass spectrometry (MS) to analyze the oligomerization state of thousands of proteins in a single experiment. Soluble extracts from intact Arabidopsis leaves were fractionated using size exclusion chromatography (SEC), and abundance profiles across the column fractions were quantified using label-free precursor ion (MS1) intensity. In duplicate experiments, we reproducibly detected 1693 proteins, of which 983 proteins were cytosolic. Based on the SEC profiles, approximately one third of all of the soluble proteins were predicted to be oligomeric. Our dataset includes both subunits of previously known complexes as well as hundreds of new protein complexes. The label-free MS1-based quantification method described here produced a highly useful dataset for the plant biology community, and provided a foundation to incorporate orthogonal protein complex separation methods so the composition and dynamics of protein complexes can be analyzed based on LC/MS profile data alone.

Publisher URL: www.sciencedirect.com/science

DOI: S1874391917302075

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.