3 years ago

Solid body motion prediction using a unit quaternion-based solver with actuator disk

Peng Du, Abdellatif Ouahsine, Yannick Hoarau

Publication date: December 2018

Source: Comptes Rendus Mécanique, Volume 346, Issue 12

Author(s): Peng Du, Abdellatif Ouahsine, Yannick Hoarau

Abstract

A six-Dof motion solver based on unit quaternions and an actuator disk model are implemented for ship hydrodynamics predictions. The six-Dof module is tested using the water entry phenomenon of a free falling sphere. The displacement history and impacting forces are analyzed. A KCS (KRISO container ship) model with the allowances of sinkage and trim is then simulated and validated. The actuator disk model is used to replace a real propeller. The open-water test of a KP458 propeller is first carried out to obtain the thrust and torque coefficients, using both the multi-run and single-run approaches. Oblique Towing Tank (OTT) tests using the actuator disk are conducted at last and the results agree well with the experiments. These models can be used for simulating six-Dof motions and captive model tests of ships.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.