3 years ago

Mitochondrial disfunction and ROS production are essential for anti-Trypanosoma cruzi activity of β-lapachone-derived naphthoimidazoles

Ana Cristina S. Bombaça, Paula G. Viana, Augusto C.c. Santos, Thaissa L. Silva, Aline Beatriz M. Rodrigues, Ana Carolina R. Guimarães, Marilia O.f. Goulart, Eufrânio N. Da Silva Júnior, Rubem F.s. Menna-barreto

Publication date: Available online 14 November 2018

Source: Free Radical Biology and Medicine

Author(s): Ana Cristina S. Bombaça, Paula G. Viana, Augusto C.C. Santos, Thaissa L. Silva, Aline Beatriz M. Rodrigues, Ana Carolina R. Guimarães, Marilia O.F. Goulart, Eufrânio N. da Silva Júnior, Rubem F.S. Menna-Barreto


Chagas disease is caused by the hemoflagellate protozoa Trypanosoma cruzi and is one of the most important neglected tropical diseases, especially in Latin American countries, where there is an association between low-income populations and mortality. The nitroderivatives used in current chemotherapy are far from ideal and present severe limitations, justifying the continuous search for alternative drugs. Since the1990s, our group has been investigating the trypanocidal activity of natural naphthoquinones and their derivatives, and three naphthoimidazoles (N1, N2 and N3) derived from β-lapachone were found to be most effective in vitro. Analysis of their mechanism of action via cellular, molecular and proteomic approaches indicates that the parasite mitochondrion contains one of the primary targets of these compounds, trypanothione synthetase (involved in trypanothione production), which is overexpressed after treatment with these compounds. Here, we further evaluated the participation of the mitochondria and reactive oxygen species (ROS) in the anti-T. cruzi action of naphthoimidazoles. Preincubation of epimastigotes and trypomastigotes with antioxidants (α-tocopherol and urate) strongly protected the parasites from the trypanocidal effect of naphthoimidazoles, decreasing the ROS levels produced and reverting the mitochondrial swelling phenotype. The addition of pro-oxidants (menadione and H2O2) before the treatment induced an increase in parasite lysis. Despite the O2 uptake and mitochondrial complex activity being strongly reduced by N1, N2 and N3, urate partially restored the mitochondrial metabolism only in N1-treated parasites. In parallel, MitoTEMPO, a mitochondrial-targeted antioxidant, protected the functionality of the mitochondria in N2- and N3-treated parasites. In addition, the trypanothione reductase activity was remarkably increased after treatment with N1 and N3, and molecular docking demonstrated that these two compounds were positioned in pockets of this enzyme. Based on our findings, the direct impairment of the mitochondrial electron transport chain by N2 and N3 led to an oxidative misbalance, which exacerbated ROS generation and led to parasite death. Although other mechanisms cannot be discounted, mainly in N1-treated parasites, further investigations are required.

Graphical abstract

Graphical abstract for this article

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.