3 years ago

Effect of UV irradiation on PC membrane and use of Pd nanoparticles with/without PVP for H2 selectivity enhancement over CO2 and N2 gases

Rajesh Kumar, Kamakshi, Shivani Shisodia, Manoj Kumar, Kamlendra Awasthi

Publication date: 22 November 2018

Source: International Journal of Hydrogen Energy, Volume 43, Issue 47

Author(s): Rajesh Kumar, Kamakshi, Shivani Shisodia, Manoj Kumar, Kamlendra Awasthi

Abstract

The hydrogen-based economy is one of the possible approaches toward to eliminate the problem of global warming, which are increases because of the gathering of greenhouse gases. Palladium (Pd) is well-known material having a strong affinity to the hydrogen absorbing property and thus appropriate material to embed in the membrane for the improvement of selective permeation of hydrogen gas. In present work, we have functionalized polycarbonate (PC) membranes with the help of UV irradiation to embed the Pd nanoparticles in pores as well as on the surface of the PC membrane. Use of Pd Nanoparticles is helpful to enhance the H2 selectivity over other gases (CO2, N2, etc.). Also, the UV based modification of membrane increases the attachment of Pd Nanoparticles. Further to enhance the Pd nanoparticles attachment, we used PVP binder with Pd nanoparticles solution. Gas permeability measurements of functionalized PC membranes have been carried out, and better selectivity of hydrogen has been found in the functionalized and Pd nanoparticle binded membrane. PC membrane with 48 h UV irradiated and Pd NPs with PVP have been found to have maximum selectivity and permeability for H2 gas. All the samples being characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy and UV–Vis spectroscopy for their morphological and structural investigation.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.